If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c^2-35c-18=0
a = 6; b = -35; c = -18;
Δ = b2-4ac
Δ = -352-4·6·(-18)
Δ = 1657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{1657}}{2*6}=\frac{35-\sqrt{1657}}{12} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{1657}}{2*6}=\frac{35+\sqrt{1657}}{12} $
| d/4+7/8=6d= | | 0.7x+0.3*0.8=0.4 | | .5X-4y=40 | | 1-(3x+1)=8-(3x+1)×(3x-1) | | 4x-2x+12=2x+6 | | x+.05x=19 | | 6m+2m+200=10m+30 | | -36=-6x+3(x-7) | | -6x-4=-7x-3 | | (3x+2)=3x-6 | | 2x+5=1x+12 | | 2x−44=26 | | x-10=-x+8 | | h(.6)=-16(.6)^2+32(.6)+21 | | 6y=63-3y | | 2x+-44=26 | | 2(14)+s+3=2s+14-2 | | 10x+25=420 | | 2y+4–y=16 | | M-3/4m=1/4m | | 6(10+4x)=-3(3x+20) | | -5(-6+2x)=90 | | t+42=4t | | -7x-1=4x+10 | | 4(u-8)-8u=-36 | | 6b+6=9b | | 5+x2=41 | | 1440=16+25e | | 7a-30=4a | | (x+1)=1/(2x+2) | | 0.4s+4-4.4=0.3-1.2s-2.4 | | y^2=3.375 |